Exercise 1.37

(a) To identify a liquid substance, a student determined its density. Using a graduated cylinder, she measured out a $45-\mathrm{mL}$ sample of the substance. She then measured the mass of the sample, finding that it weighed 38.5 g . She knew that the substance had to be either isopropyl alcohol (density $0.785 \mathrm{~g} / \mathrm{mL}$) or toluene (density $0.866 \mathrm{~g} / \mathrm{mL}$). What are the calculated density and the probable identity of the substance? (b) An experiment requires 45.0 g of ethylene glycol, a liquid whose density is $1.114 \mathrm{~g} / \mathrm{mL}$. Rather than weigh the sample on a balance, a chemist chooses to dispense the liquid using a graduated cylinder. What volume of the liquid should he use? (c) Is a graduated cylinder such as that shown in Figure 1.21 likely to afford the accuracy of measurement needed? (d) A cubic piece of metal measures 5.00 cm on each edge. If the metal is nickel, whose density is $8.90 \mathrm{~g} / \mathrm{cm}^{3}$, what is the mass of the cube?

Solution

Part (a)
The density of the substance is

$$
\text { density }=\frac{\text { mass }}{\text { volume }}=\frac{38.5 \mathrm{~g}}{45 \mathrm{~mL}} \approx 0.86 \frac{\mathrm{~g}}{\mathrm{~mL}},
$$

so it's likely toluene.

Part (b)

The volume of ethylene glycol is

$$
\text { volume }=\frac{\text { mass }}{\text { density }}=\frac{45.0 \not \subset}{1.114 \frac{\phi}{\mathrm{~mL}}} \approx 40.4 \mathrm{~mL} .
$$

Part (c)

Yes, a volume of 40.4 mL can definitely be measured with a graduated cylinder.

Part (d)

The mass of nickel is

$$
\text { mass }=\text { density } \times \text { volume }=8.90 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \times(5.00 \mathrm{~cm})^{3} \approx 1.11 \times 10^{3} \mathrm{~g} .
$$

